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LE'ITER TO THE EDITOR 

Critical behaviour at the 8 point of self-avoiding walks on a 
Manhattan lattice 

S L A de Queirozt and J M Yeomans 
Department of Theoretical Physics. University of  Oxford, I Keble Road, Oxford OX1 3NP. 
UK 

Received 17 M B Y  1991 

Abstract. We study the collapse of self-attracting self-avoiding walks on a Manhattan 
lattice, by means of phenomenological renormalization group techniques. Our results 
support a recent prediction of non-universality for the entropic exponent y The surface 
exponents are in the same universality class as the 8 transition on undirected lattices, thus 
differing from those o f  the 8' point. We use a two-parameter renormalization group 10 
"",',I,, *a..11.aLL> "1 L . l L  L I Y D I Y I C I  C"p""L"L. 
-L.":- "..:..."."" -*.LA ^_^^ ~ .̂ -... 

This letter describes a transfer matrix study of the collapse transition of a self-avoiding 
walk on a Manhattan lattice. The Manhattan lattice is a two-dimensional square lattice 
on which bonds are directed, as shown in figure 1, such that there is no overall 
directiona! bias [ I ,  2j1 !E recent work [?, 4!, !he fo!!owing exact res.!! have been 
proposed for the collapse transition (tricritical point) of a self-avoiding walk with 
nearest-neighbour attractive interactions on a Manhattan lattice. Firstly the critical 
fugacities are predicted to be 4 and for steps of the walk and nearest-neighbour 
interactions respectively. Secondly the entropic exponent y is shown to he 9 ,  thus 
differing from the corresponding value for non-directed, two-dimensional lattices 
[ 5 ;  61. The correlation-length exponent U; on the other hand, is expected to be as in 
the non-directed case. 

An argument is given, that y differs on the Manhattan and non-directed lattices 
because on the latter the partition function includes contributions from self-trapping 
configurations excluded in the former. It seems surprising that this, being a purely 
geometric feature, should affect the value of y only at the collapse transition: it is 
known that in the high-temperature phase y does not differ from the corresponding 
value for undirected lattices [7,8]. 

All the results described above were derived from a correspondence between walks 
on the Manhattan lattice and the hull of a percolation cluster at criticality, with the 
help of exact results for the latter. 

We present here a direct numerical check of such claims. Our results are consistent 
with those described above, although some discrepancies are present. We also study 
the surface and crossover exponents, which do not seem to be accessible by the methods 
of [3,4]. 

t On sabbatical leave from Departamento de Fisica, PUCIRJ. Cx.P. 38071,22453 Ria de Janeiro RJ, Brazil, 
from I August 1990 to 31 July 1991. 
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Indirect support for the location of the tricritical point and for a value of y =$ can 
be found by recalling a mapping, proposed in references [3,4], between tricritical 
self-avoiding walks on the Manhattan lattice and a restricted model of trails on the 
square lattice. The latter model is equivalent to the zero-component limit of an O ( n )  
model on a square lattice with a particular set of couplings [9], which has been solved 
exactly at criticality [IO]. Again, surface and crossover exponents have not been 
discussed. 

We consider a self-avoiding walk on a strip of width L. Attractive interactions, -J, 
are introduced as usual between nearest-neighbour sites visited by the walk. An example 
is shown in figure 2. This model is described by the generating function 

%= w v  (1) 
walks 

where w is the step fugacity, r = exp j J k T  and N and 6' count the number of steps 
in the walk and number of interactions respectively. For fixed T, the partition function 
becomes singular at a critical fugacity w c ( r ) .  At high temperatures this corresponds 
to a second order phase transition, at which the average walk length diverges. The 
collapse (or 8 )  transition, to a phase with finite density, occurs at a tricritical point 
( U , ,  TJ.  

Figure 1. The Manhattan lattice. 

The generating function can be written in terms of transfer matrices, T1, T', where 
the basis states of the transfer matrix are labelled by the configuration of bonds within 
a vertical column, together with the bonds entering or leaving that column. As bond 
directionalities alternate, different matrices (labelled t, I) are needed to add successive 
layers to the strip. The correlation length on a strip of width L i s  related to the largest 
eigenvalues A I ,  A! through 

eL= -2(1n ALA:)-'. (2) 
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Figure 2. A self-avoiding walk with nearest-neighbour attractive interactions (denoted by 
hatched lines) on a strip of the Manhattan lattice, of width L=5.  

Results will be presented for both free and periodic boundary conditions. For the 
former, in contrast to the case for self-avoiding walks on non-directed lattices [ l l ] ,  
only strips of odd widths can be used. This is because a final row of bonds directed 
on the left, say, forms a trap for a walk progressing from the left. As a result the 
transfer matrices for strips of width L and. L +  1 are identical for odd L. For periodic 
boundary conditions only even L must be used, to avoid two adjacent rows of bonds 
pointing in the same direction. We were able to reach a maximum strip width L =  12 
for the Manhattan lattices with periodic boundary conditions and L =  11 with free 
boundary conditions. 

We implement the phenomenological renormalization group in three ways. 
(i) One-parameter renormalization group with T fixed. The collapse transition is 

predicted [3,4] to take place at (q, T,) = (4, a). Therefore, our first approach was to 
set T = T,= and to use a one-parameter phenomenological renormalization group 
to obtain finite-size approximations to the critical fugacity, w f (  7,). defined by comparing 
the correlation lengths on strips of two successive widths 

Linearizing around the fixed point of (3) gives a series of approximations for the 
correlation-length exponent 

Results for free and periodic boundary conditions are shown in tables l ( a )  and ( b )  
respectively. Whenever the sequences of finite-size estimates behave smoothly and 
converge sufficiently rapidly, extrapolated values can sensibly be obtained by fitting 
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Table I .  B point of self-avoiding walks on the Manhattan lattice: results from the one- 
parameter renormalization group with T = a. 

( a )  Free faundary conditions 
3 
5 0.533 20 
7 0.51590 
9 0.508 YO 

11 0.505 50 

Expected 

- - 0.945 38 
1.70490 1.21437 
1.711 51 1.378 23 
1.715 21 1.487 40 
1.71773 1.56489 

d 2 

- 
0.736 21 
0.992 44 
1.167 15 
1.292 70 

2 

( b )  Penodic boundary conditions 
4 - 
6 0.502 16 
8 0.502 08 

10 0.502 89 
I2 0.503 64 

Expected 

- 0.485 41 
0.780 79 0.49561 
1.73294 0.507 89 
1.69 I 69 0.527 68 
1.65398 0.555 34 

I i 

- 
0.475 74 
0.476 49 
0.464 19 
0.447 46 

i 

the results for the three largest L values to the formula 

where A and $ are constants, and similarly for the other quantities. 
For free boundary conditions, the extrapolations obtained using ( 5 )  are U $  = 0.4993, 

U,’ = 1.734, in good agreement with the predicted values f and respectively. For 
periodic boundary conditions the results are still moving away from the expected 
values with increasing L, presumably showing that these strip widths are still far from 
the asymptotic scaling regime. 

Next we examine the exponent y, with the help of the scaling relation q = 2 - y /  v, 
where 1) describes the decay of correlations. Finite-size approximations to q can be 
obtained from 

where the correlation length is evaluated for a strip with periodic boundary conditions. 
Results were obtained by calculating the correlation lengths both at the presumed 
exact critical fugacity U , = +  of the infinite lattice [12] and at U: defined by (3). The 
latter procedure is especially useful when the location of the critical point is itself 
under investigation. Here, it provides a convenient estimate of the amount of uncertainty 
induced by calculating critical quantities at approximate values of the critical para- 
meters. As we shall see below, this can be very large in the present case. 

The arguments of [3,4] give y = $ and v = $, implying 1) = f .  For two-dimensional, 
undirected lattices, one has [5,6] y = $ ,  v = + ,  giving 7 =O. Results for q from the 
present calculations are presented in table l ( b ) .  There is a very strong dependence of 
our estimates on fugacity, because the correlation length changes rather quickly as w 
is varied. Hence it is difficult to obtain precise results. Nevertheless, it is safe to state 
that 1) = 0 i s  definitely outside our error estimates, no matter how generous these are. 
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Rough extrapolations of the data in table l ( b )  against 1/L would give vm(wt=t)=0.7, 
qm(wf)=0.3,  so a final estimate of q=0.5*0.2 gives an approximate idea of the 
uncertainties involved. Thus, our results are a clear sign that the collapse transition of 
self-avoiding walks on a Manhattan lattice lies in a different universality class to that 
on non-directed two-dimensional lattices. It  must be noted, however, that for each 
individual sequence of finite-size estimates, the values of q diverge from the expected 
value off with increasing L. Presumably this is because the asymptotic scaling regime 
has not yet been reached, with the difficulty being compounded by the large error in 
7 which results from any inaccuracy in the estimates for the critical fugacities. 

It  is also possible to obtain finite-size approximations to the exponent, 9', which 
describes the decay of correlations along the surface 

2L 

715 L 

&, (7) 

where the correlation length is evaluated for strips with free boundary conditions. 
Again, we have calculated the correlation length both at w = o, =$ and at U*, given by 
(3). Results are presented in table l (a ) .  They strongly suggest convergence towards 
the value 2 conjectured by Seno and Stella [6] for the 0 point of self-avoiding walks 
on non-directed lattices, rather than to q 5 =  0 as proposed by Duplantier and Saleur 
[SI for the so-called 0' point (at which a subset of next-nearest neighbour interactions 
is present in addition to first-neighbour couplings). 

Note that, in using (6) and (7), we have assumed that the system is conformally 
invariant, even though the bonds are directed. Directionality is expected to be irrelevant 
here, since it has only a local (as opposed to global) character for the Manhattan 
lattice [SI. 

(iij One-parameter renormalization group with w fixed. As a complement to the 
results just described, we fixed w = w,  = f  and allowed T to vary. Fixed points are then 
located as before through (3) ,  but with o replaced by z Note that at the fixed point 
the estimate of Y is still given by (4), as the step fugacity is the relevant field for the 
correlation length in a one-parameter formulation. Results are given in tables 2(0) and 

Table 2. B point of self-avoiding walks on the Manhattan lattice: results from the one- 
parameter renormalization %roup with w = f .  

( a )  Free boundary conditions 
5 1.576 03 1.83294 0.833 99 
7 1.49061 1.79228 1.06435 
9 1.456 40 1.769 24 1.22001 

11 1.43998 1.755 95 1.33251 

Expected Ji 0 2 ~ 

( b )  Periodic boundary conditions 
6 1.427 10 1.790 27 0.48044 
8 1.425 45 1.742 98 0.48241 
IO 1.429 12 1.707 00 0.473 86 
I2 1.432 53 1.67493 0.460 98 

Expected Ji I i 
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( b )  for free and periodic boundary conditions respectively. A very similar pattern is 
seen to the case with fixed 7. 

For free boundary conditions the results for T: and uL' extrapolate, using ( 5 ) ,  to 
1.411 and 1.716 respectively, in reasonable agreement with the predicted values fi 
and $. Again, the results obtained for 7' are consistent with a value of 2 rather than 
zero [ S ,  61. 

For periodic boundary conditions, the finite-size estimates of 7:. U;' and 7 (the 
latter calculated at the fixed point of (3)) are again close to the expected values, 4, 
$ and f respectively. However, as was the case for fixed T, they do  move slightly away 
from these values as L increases. 

(iii) Two-parameter renormalizafion group. In an attempt to obtain estimates of the 
crossover exponent, we performed a two-parameter renormalization group in which 
the system was allowed the freedom to find a fixed point ( U * , ,  7:) by comparing the 
correlation lengths on three strips 

Linearizing around the fixed points the exponents y = Y-' and y,= b/w, where @ is 
the usual crossover exponent, are solutions of an equation 

(9) 
Jw Jw JT 

where all the derivatives are evaluated at the fixed point and y ' = y ,  yz  [13]. 
For strips with free boundary conditions there was no solution of (8) for physically 

acceptable values of the fugacities. For periodic boundary conditions the results are 
displayed in table 3. We have also obtained estimates for 7 as defined by (6), where 
the correlation length is evaluated at ( w f ,  T:). 

Table 3. lJ point of self-avoiding walks on the Manhattan lattice: ~esulls of the two- 
parameter renormalization groups on strips of width L - 2 ,  L, L + 2 .  with periodic boundary 
Conditions. 

6 0.50296 1.409 49 1.50590 i.18non 0.47403 

10 0.47723 1.54550 1.73640 1.03646 assno5 

Expectcd Ji i i 

8 0.48580 1.501 82 1.65791 1.05045 0.52469 

Extrapolating the results for ( w : ,  T:) using (5 )  gives (0.462, 1.615). These values 
are not inconsistent with the exact proposal, (;.A), given the known difficulty of 
using the transfer matrix approach to study the collapse transition of self-avoiding 
walks [14, 151. However, as already noticed for the one-parameter calculations, the 
numerical results tend to move away from the values presumed to be exact with 
increasing L. 



Letter to the Editor L939 

Results for U-' do move towards $ with increasing L, although an extrapolation 
using (5) gives 1.89, which has an error of -10%. The estimates for q again exclude 
0 and are close to f ,  but there is wide variation with L. 

Using the prediction q5 =$ for the 8' point [ 5 ] ,  and with Y-' =$, one would expect 
y 2  to approach $. Our results tend to a somewhat larger value; however, bearing in 
mind the uncertainties obtained for U-', it is not safe to regard this as indicating a 
discrepancy. 

In  conclusion, we have presented a transfer matrix study of a self-avoiding walk 
with nearest-neighbour attractive interactions on a Manhattan lattice. It has been 
claimed [3,4] that this model has a collapse transition at ( w t ,  7,) = (k, a), with a 
non-universal exponent q = f .  For the collapse transition on a non-directed two- 
dimensional lattice q is expected to he zero. 

The results from the one-parameter phenomenological renormalization group, 
assuming either T = T( = fi or w = w,=f, are consistent with this. However, for strips 
with periodic boundary conditions, the estimates for q diverge from f for increasing 
strip width L. Using a two-parameter renormalization group, we also obtain results 
consistent with those predicted, although our estimates ( w f ,  T: )  again move away 
from (f,  Jz) as L increases. 

The discrepancies are most probably due to the failure to reach the scaling regime. 
Numerical studies of the collapse transition are known to be extremely difficult, due 
to strong finite size effects in the collapsed phase [ 14, 151. It is therefore hardly surprising 
that our results are not more precise. However, they do provide support for the claim 
that q differs at the collapse transition of the Manhattan and non-directed lattices. 
We have also shown that the surface exponents are in the universality class of the 0, 
rather than the 0'. point. Our results for the crossover exponent are not inconsistent 
with the value obtained for the 0' point [5], but are very imprecise. Further numerical 
investigation, by Monte Carlo or exact enumeration methods, would be desirable. 

We should like to thank C Vanderzande and A L Stella for interesting conversations. 
SLAdQ thanks R M Bradley for sending his results prior to publication, and Brazilian 
Government agencies CNPq, CAPES and FINEP for financial support. 
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